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Hypersonic Flow Predictions Using Linear
and Nonlinear Turbulence Closures
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Two- and three-dimensional hypersonic � ow cases are computed using linear one-equation closures and a non-
linear two-equation model, where the anisotropy tensor is modeled as a cubic function of mean strain and vorticity
tensors. The latter is found to excel in predicting bypass transition, whereas the one-equation Rt model is very
good at heat-transfer prediction. Both closures excel in predicting pressure distributions; however, the nonlinear
model is found to overpredict heat-transfer. This suggests that in separated � ow regions with simultaneously low
mean-� ow kinetic energy (and therefore low strain magnitude) and high temperature gradients, overpredicted
levels of turbulence length scale can lead to rather small errors in the turbulent shear stress, while at the same
time leading to a large overprediction of the turbulent heat � uxes. The simpler one-equation Rt model is therefore
a good candidate for engineering prediction of hypersonic heat-transfer.

I. Introduction

T HERE has recently been renewed interest in hypersonic � ight
vehicles. Projects such as Sandia laboratories’ Hypersoar and

Boeing’s Hyper-X are current examples. The engine inlets of such
vehicles typically involve compression ramps, which, through a se-
ries of shocks, reduce the engine in� ow velocity to enable more
ef� cient combustion.Such a shock system imposes a severe penalty
in terms of surface heating, requiring careful attention to the choice
of materials and/or cooling devices to avoid the possibility of local
ablationof the vehicle’s skin. It is important, therefore, to be able to
predict hypersonic � ow over ramp/wedge con� gurations, including
surface heating characteristics, with the aim of using this capabil-
ity for analysis and design of vehicle components such as engine
inlets. The ability to predict turbulent hypersonic � ows with a high
level of con� dence carries much broader bene� ts for entire vehicle
external/internal � ow prediction and design capability.

Conventional linear k–² models are notorious for severely over-
predictingheat-transfer levels in � ows involving strong enough ad-
verse pressure gradient to cause separation,as documented in detail
by Launder.1 This stems from ill-understood def� ciencies in the ²
transport equation in nonequilibriumnear-wall regions, which can
lead to excessive levels of the length scale generated in separated
� ows and hence to correspondingly excessive heat-transfer levels,
especially in the reattachment region. The k–² closure applied in
this work does include a nonequilibriummodi� cation to the ² equa-
tion, but this is evidently not powerful enough to overcome the
near-wall length scale problem. It is, therefore,desirable to evaluate
the performance of single-equationclosures in predicting � ows in-
volving heat-transferunder strong nonequilibriumconditions.This
paper tests the capability of three such turbulence closures to pre-
dict heat-transfer under hypersonic � ow conditions: the Rt model,2

the Spalart–Allmaras (S–A) model,3 and Menter’s model.4 The for-
mulation of the latter two models is given in detail in Refs. 3 and
4, respectively, and the Rt model is described next. Based on the
results of a Mach 9 ramp � ow,5 the latter closurewas used to predict
a three-dimensionalMach 8 inlet � ow. The cubic k–² model, how-
ever, is better equipped to predict bypass transition than either its
base (linear) model or the Rt model is, as demonstratedon a Mach 8
transitional � ow test case.
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II. Formulation of Turbulence Models
A. Cubic k–² Model

This nonlinear model6 accounts for both Reynolds-stress aniso-
tropy and streamline curvature, including swirl effects. The
Reynolds stresses are modeled using the mean strain and vortic-
ity relations from the quadratic model of Shih et al.7 with the cubic
extension proposed by Lien and Leschziner.8

Followingthe notationof Loyauet al.,9 Cartesiantensorsof rank 2
are denotedby bold, nonitalicsymbols (a, b, etc.), with the following
conventions:

a = ai j , ab = aik bk j , abc = aik bklcl j , etc.

a2 = aik ak j , {a2} = aik aki , I = d i j

The canonical form of a cubic model is then written as

a = ¡ 2C ¤
l f l S + a1 S2 ¡ 1

3
{S2}I + a2(WS ¡ SW)

+ a3 W2 ¡ 1
3
{W2}I + b1{S2} + b2{W2} S

+ b3 W2S + SW2 ¡ 2
3
{SW2}I + b4(WS2 ¡ S2W) (1)

where the nondimensional strain, vorticity, and anisotropy tensors
are

Si j = (k /2²) Ui, j + U j,i ¡ 2
3
Uk ,k d i j

Wi j = (k /2²)(Ui, j ¡ U j,i ) (2)

ai j = ui u j / k ¡ 2
3
d i j (3)

The Shih et al. and Lien–Leschziner models set the coef� cients
in the preceding formulation as given here: a1 , 3 f l / (1000 + S3);
a2, 15 f l / (1000 + S3); a3, ¡ 19 f l / (1000 + S3); b1, ¡ 16(C ¤

l )3 f l ;
b2, ¡ 16(C ¤

l )3 f l ; b3 , 0; b4, 80(C ¤
l )3 f l . Here

C ¤
l = 2

3
(1.25 + S + 0.9X ) (4)

S = 2Si j Si j , X = 2Wi j Wi j (5)

and the low Reynolds damping of the linear (base) model10 is used:

f l =
1 ¡ e ¡ 0.01Rt

1 ¡ e ¡
p

Rt

max 1,
2
Rt

1
2

(6)

Rt ´ k2 / ( m ²) being the turbulence Reynolds number.
The exact production term Pk = ¡ q u i u j Ui, j in which u i u j is de-

rived from Eq. (3), is used in the k and ² transport equations. The
base (linear) model, supplyingk and ² in the precedingformulation,
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is given in detail in Ref. 10. This topography-parameter-free model
is designed for enhanced handling of � ows involving adverse pres-
sure gradient (a feature not common to k–² models) using an extra
source term in the ² transport equation. It also enforces timescale
realizability by ensuring that the turbulence timescale never falls
below the Kolmogorov microscale (m /²)1/ 2.

B. Linear Single-Equation Model

The Rt model consistsof solvingthe following transportequation
for the undamped eddy viscosity R:

q
DR

Dt
=

@

@x j
l +

l t

r R

@R

@x j

+ C1 q (R Pk )
1
2 ¡ (C3 f3 ¡ C2) q

(7)

where D/Dt is the compressive material derivative. The turbulence
production is expressed in terms of the Boussinesq model

Pk = m t
@Ui

@x j

+
@U j

@xi

@Ui

@x j
¡

2
3

@Uk

@xk

2

(8)

and in the destruction term

=

@R

@x j

@R

@x j
, } > 0

0, otherwise
(9)

where

} =
@Q

@x j

@R

@x j

(10)

and

Q = Ui ¡ U 0
i

2
1
2

(11)

Here U 0
i is the velocityvectorof the frame of reference (often 0); Ui

are the Cartesian velocity components; xi ´ (x , y, z) are the corre-
spondingcoordinates; l and l t are the dynamicmolecularand eddy
viscosities, respectively; q is density; and m t is the kinematic eddy
viscosity l t / q . vanishes at the location of maximum R because
r R =0 there. The conditional application retains = 0 from that
location inward.

The eddy viscosity � eld is given by

l t = f l q R (12)

where

f l =
[tanh( a v 2)]
[tanh( b v 2)]

(13)

and

v ´ q R / l (14)

The model constants and the damping function f3 are derived from
asymptotic arguments at walls and limit � ow regions such as the
logarithmicoverlap and pipe centerline.Details are given in Refs. 2
and 11. The � nal results are as follows:

f3 = 1 + 2 a / (3 b C3 v ) (15)

C1 = j 2 C3 ¡ C2 ¡ r ¡ 1
R (16)

C2 = ¡ 5 a / (3 b r R) (17)

and

C3 ¡ C2 = 3/ (2 r R) (18)

where j = 0.41, r R =0.8, a = 0.07, and b =0.2.
Equation (7) is subject to the following boundary conditions:
1) Solid walls

R = 0 (19)

2) Freestream in� ow and initial conditions:

R 1 · m 1 (20)

III. Highlights of the Numerical Approach
CFD+ + , a Navier–Stokes � ow solver for either compressible

or incompressible � uid � ows, was used here. This code features
a second order total variation diminishing discretization based on
a multidimensional interpolation framework. For the results pre-
sented here, a Harten, Lax, van Leer, with contact wave (HLLC)
Riemann solver was used to de� ne the (limited) upwind � uxes.This
Riemann solver is particularlysuitable for hypersonic � ow applica-
tions because, unlike classical linear solvers such as Roe’s scheme,
it automaticallyenforces entropy and positivity conditions.Further
details on the numerical methodology in CFD+ + can be found in
Refs. 12–15.

IV. Computational Results
A. Hypersonic Flow Case 1

This example concerns � ow over a curved compression sur-
face, with experimetal data by Holden.16 The compression cre-
ates an oblique shock, which induces a large increase in heat-
transfer to the cooled wall. Given � ow conditions are M 1 = 8.03,
U 1 / m =5.35 £ 107/m, T1 =50.3 K, and Tw / T1 =5.89. The ex-
perimentaldata indicatelaminar-to-turbulent� ow transitionapprox-
imately between x = 12.7 and 30.5 cm. The computation was car-
ried out on a 200 £ 50 grid, with at least � ve cells inside the viscous
sublayer and with y+ ·1 at the � rst centroids away from the wall.

Figure 1 shows the curved ramp geometry and Fig. 2 the compu-
tationalmesh. Figure 3 is a Mach contour plot, showing the oblique
shock. Figure 4 is a comparison of heat-transfer predictions by the
Rt , the linear (base) k–², and the cubic model with the experimental
data. All calculations used a 1% freestream turbulence level and a
length scale of 0.127 mm at the in� ow boundary, located upstream
of the ramp leading-edge.Each turbulencemodel predicted its own
transition location and extent. The � gure clearly indicates the ad-
vantageof the cubicmodelover the linearones in predictingthe � ow
transition region. This stems to some extent from Reynolds-stress
anisotropy but mainly from the dependence of C ¤

l on mean strain
and vorticity [see Eq. (4)]. This mechanism delays turbulence de-
velopment in regions of high strain, found in developing boundary

Fig. 1 Mach 8 ramp: geometrical details.

Fig. 2 Mach 8 ramp: computational mesh.

Fig. 3 Mach 8 ramp: Mach contours.
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Fig. 4 Mach 8 ramp: effect of model on heat-transfer prediction.

Fig. 5 Mach 9 ramp: geometry and � ow features.

layers such as in leading-edgeregions.This delayenablesprediction
of the laminar and transitional � ow regions observed in this exam-
ple. All models predict the heat-transferpeak correctly,however, in
this nonseparating� ow case.

B. Hypersonic Flow Case 2

This case is a two-dimensionalMach 9 � ow over a 38-deg cooled
ramp, with experimental data reported in Ref. 5. An oblique shock,
impinging on the boundary-layer downstream of the ramp corner,
induces � ow detachment, with subsequent reattachment onto the
ramp surface, where a large heat-transfer peak occurs. Figure 5
shows the geometry and main � ow features. The � ow conditions
are as follows: M 1 =9.22, Re 1 = 0.47 £ 106/cm, total tempera-
ture T0 =1070 K, T1 =64.5 K, and wall temperature Tw =295 K.
Three single-equation turbulence closures were used to compute
this � ow: the Rt model, the S–A model, and Menter’s model. The
cubic k–² closure was also tested. In lieu of adequate informa-
tion about the experimental in� ow conditions, a compressibility-
corrected equilibrium 1-mm-thick turbulent boundary-layer (wake
strength parameter P =0.55) was imposed at the in� ow, together
with the following pro� les for k, ², and R:

k = j 2 C
1
2

l y
dU

dy

2

y+ · 11 (21)

k = max k 1 , j 2 C
1
2

l y
dU

dy

2

y + > 11 (22)

² =
2A²k

3
2

y 1 ¡ e ¡ A² u y +2
(23)

R = C l k2 ² (24)

where C l =0.09, A² = C3/ 4
l / (2 j ), u =0.166, and k 1 was set to

8 £ 10 ¡ 7U 2
1 . In the preceding, y+ = yq u s / l , and the friction ve-

locity u s = ( s / q )1/ 2
w . This comprises a plausible and consistent set

of in� ow pro� les; however, calculations with a slightly thicker
boundary-layer as well as without a boundary-layer yielded very
little change in the � nal results because of the limited upstream

in� uence of the strong interaction region in this hypersonic � ow
case.

The computationwas performedon a 250 £ 200 grid with at least
20 cells inside the viscous sublayer and with the � rst centroidal
locations away from the wall being at y+ ¼ 0.1. The grid was
also clustered in the x direction, centered at the ramp corner. A
200 £ 150 grid was also used to ascertain grid independenceof the
reported � ne mesh results.

Figure 6 shows wall pressureandFig. 7 heat-transferdistributions
as predicted by the four models. Comparison with the experimental

Fig. 6 Mach 9 ramp: wall pressure distribution.

Fig. 7 Mach 9 ramp: heat-transfer distribution.

Fig. 8 Mach 9 ramp: convergence history.
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data for both pressure and heat-transfer indicates that the one-
equation Rt model yields the best overall prediction. It captures the
extent of the � ow separation region and also correctly predicts the
shock locationand the peak pressure level. The S–A model predicts
less than half the size of the experimentally observed separation
bubble, whereas Menter’s model predicts an even smaller reversed
� ow; hence, both closures predict the shock too far upstream. The
heat-transferis, again, best predicted by the Rt closure,whereas the

Fig. 9 Mach 8 inlet: sketch of geometry.

Fig. 10 Mach 8 inlet: � ow features in wedge region.

Fig. 11 Mach 8 inlet: surface pressure contours between the wedges—L, prediction; R, exp. data.

S–A model prediction is somewhat inferior. Menter’s model yields
a peak heat-transfer some four times the observed level, and the
cubic model’s performance is only slightly better, albeit the peak
location is better predicted because of correct capturing of the sep-
aration bubble. The fact that the cubic model captures the pressure
distributionalmost as well as the Rt model does while its predicted
heat-transferis too high suggests that in separated� ow regionswith
simultaneously low mean-� ow kinetic energy (and therefore low
strain magnitude) and high temperature gradients, overpredicted
levels of turbulencelengthscale can lead to rather small errors in the
turbulent shear stress while leading to a large overpredictionof the
turbulent heat � uxes. Figure 8 is a convergence history plot, based
on skin friction, showing that the Rt and Menter’s closure conver-
gence rates are much better than those of the S–A and cubic model
in this case.

The Rt model’s superior performance stems from its derivation2:
the near-wall formulation, particularly the function f3 , was ob-
tained from asymptotic arguments, and all model constants, as well
as the function f l , were derived to comply with limit arguments
such as the logarithmic overlap layer, � ow at duct center, � ow
with high pressure gradient and other unit cases. Menter’s closure,
on the other hand, was derived from the standard k–² model, ex-
cept for replacement of the relation ¡ j ui u j j =a1k( Pk /²)1/ 2 with
Bradshaw’s hypothesis ¡ j u i u j j = a1k. However, the distinctionbe-
tween theseformulationsdiminishesas a wall is approachedbecause
k » y2; hence this closure’s similarity to a k–² model in its near-wall
behavior.

C. Hypersonic Flow Case 3

Kussoy et al.17 performed extensive experimental measurements
on a Mach 8.3 � ow in a wedge inlet con� guration. To pre-
dict this complex three-dimensional � ow� eld, involving crossing
shock/boundary-layer interactions, the � ow solver was used on a
mesh consisting of approximately 250,000 cells. Centroidal loca-
tions adjacent to walls were at y + ¼ 60, and a wall function that ac-
counts for compressibility and heat-transfer effects was employed.
A solutionto thewall wouldhave entaileda considerablylargergrid,
deviatingfrom current engineeringpractice.The Rt model was em-
ployed here on the strength of its performance in the Mach 9 case.
For comparison, the cubic k–² model was also used to predict this
� ow.

Figure 9 is a sketch of the topology. Figure 10 is an overview
of the � ow in the region of the wedges, showing pressure contours
on one wedge surface and streamlines. The observation is made
that the � ow in the midregion of the wedge maintains an approx-
imately two-dimensional � avor. The high-pressure region down-
stream of the shoulder is caused by crossing shock impingement
from the other wedge. The streamlines at the wall/wedge junction
clearly show streamwise separation caused by the adverse pressure
gradientdownstreamof the wedge shoulder.Flow spillageat the top
of the wedge, because of the cross-streampressure gradient, is also
observed.

Figure 11 compares Rt model predictionand data of surface pres-
sure contours between the wedges, showing very good agreement.
Lastly, Fig. 12 compares predicted wall pressure and heat-transfer,
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Fig. 12 Mach 8 inlet: pressure and heat-transfer pro� les in symmetry
plane.

along the symmetry line, with correspondingmeasurements. As in
the Mach 9 case, the Rt model yieldsvery goodagreementwith both
pressure and heat-transfer data. The cubic k–² closure exhibits the
same trendobservedin the precedingcase: good pressureprediction
and gross overpredictionof heat-transfer.The near-wall inadequacy
of the ² equation under strong nonequilibriumconditions evidently
overwhelms the advantages of this nonlinear model, in terms of its
otherwise superior physics, when it comes to heat-transfer predic-
tion.

V. Conclusions
The CFD+ + � ow solver, in conjunction with the linear single-

equation Rt model and a cubic k–² turbulence closure, was used
to predict three hypersonic � ow cases. Comparisons with experi-
mental data indicate that the code is able to predict these � ows with
high � delity. Both closures performed well in predicting pressure
distributions. Whereas the cubic model showed much promise in
bypass transition prediction, the linear Rt model excelled in pre-
dicting heat-transfer levels, which are of prime importance in hy-
personic � ight vehicle design. The excessive levels of heat-transfer
predicted by the cubic model suggest that in separated � ow regions
with simultaneously low mean-� ow kinetic energy (and therefore
low strainmagnitude) and high temperaturegradientsoverpredicted
levels of turbulence length scale can lead to rather small errors in
the turbulent shear stress, while leading to a large overprediction
of the turbulent heat � uxes. Comparisons were also made against

Menter’s and S–A’s single-equationmodels, which did not perform
as well as the simpler one-equation Rt model did. This leads to the
conclusion that the latter is a good candidate for engineering pre-
diction of hypersonic � ow heat-transfer. Future work will attempt
to improve the cubic model’s performance in this respect.
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